II) RANCH INFORMATION (page 3) (See Ranch Instructions, "K") ## K) MANAGEMENT PRACTICES CHECKLIST | Erosion Control | | | | | | | | | |---|-----------------------------|-------------------|------------------------------|--|---------------|--|--|--| | Erosion Control | Not applicable to operation | Practice in Place | Planned
within 3
Years | Menu of Practices | | | | | | Practices are in place
to manage sediment
from
upstream/upslope | | | | Sediment Basin, Water and Sediment Control Basin, Diversion, Grassed Waterway, Lined Waterway, Open Channel, Structure for Water Control, Surface Drainage Ditch, Underground Outlet, Conservation Cover, Filter Strip, Tree/Shrub Establishment | | | | | | Fields are designed to minimize erosion potential | | | | Contour Farming, Row Arrangement,
Buffer Strip, Diversion, Land Smooth | | | | | | Bare fields are
covered to reduce
rainfall runoff
potential | | | | Conservation Crop Rotation, Cover C
Residue Management, Contour Buffer
Planting | | | | | | Irrigation water is
managed to minimize
erosion potential | | | | Irrigation Water Management, Anioni (PAM), Deep Tillage, Soil Moisture Marigation Land Leveling | Measurements, | | | | | Potential for wind erosion is managed | | | | Hedgerows, Herbaceous Wind barrier, Windbreak/Shelterbelt Establishment, Conservation Crop Rotation, Cover Crop, Residue Management, Cross Wind Ridges, Surface Roughening, Access Road, Mulching | | | | | | Roads are protected from concentrated flow of runoff | | | | Access Road Cover Crop, Critical Area Planting, Mulching | | | | | | Ditches and banks are protected from concentrated flow | | | | Grassed Waterway, Lined Channel, Grade Stabilization
Structure, Open Channel, Structure for Water Control,
Diversion, Cut Bank Stabilization | | | | | | Soil is protected in non-cropped areas | | | | Mulching, Conservation Cover, Critical Area Planting, Filter strip, Hedgerow Planting, Range Planting, Tree/Shrub Establishment, Use Exclusion | | | | | | Potential problem areas are re-graded and protected | | | | Cut Bank Stabilization, Landslide Treatment, Critical Area
Planting, Grade Stabilization Structure, Structure for Water
Control | | | | | | Water is diverted to a stable outlet | | | | Diversion, Grassed Waterway, Lined Waterway, Open
Channel, Structure for Water Control, Subsurface Drain,
Surface Drainage Ditch, Underground Outlet, Roof Runoff
Management | | | | | | Eroded sediment is
detained or filtered
before leaving the
operation | | | | Diversion, Lined Waterway, Open Channel, Structure for Water Control, Surface Drainage Ditch, Underground Outlet, Irrigation System Tailwater Recovery, Sediment Basin, Water and Sediment Control Basin, Conservation Cover, Filter Strip, Grassed Waterway | | | | | | 1. Number of acres who not yet in place | | | | acres | | | | | | 2. Number of acres that in place | - | | | acres | | | | | | place | i nave an pianned | CIOSIOII CONUOI | suategies in | acres | | | | | **Continued on Back** | Irrigation Management | | | | | | | |---|-----------------------------|-------------------|------------------------|--|--|--| | Irrigation
Management | Not applicable to operation | Practice in Place | Planned within 3 Years | Menu of Practices | | | | Irrigation system efficiency is maximized | | | | Irrigation Mobile Lab System Evaluation where available, Irrigation Water Management, Regular System Maintenance, Irrigator/Foreman Training, Anionic Polyacrylamide (PAM), Deep Tillage | | | | Irrigation scheduling is optimized | | | | Irrigation Scheduling (based on soil moisture monitoring and/or crop evapotranspiration (ET) demand), irrigation Applications adjusted for leaching fraction and/or system distribution uniformity, irrigation records maintained | | | | Irrigation system design is optimized | | | | Irrigation System MicroIrrigation, Irrigation System Sprinkler, Irrigation Water Management, Irrigation Land Leveling, Irrigation Water Conveyance Pipeline, Irrigation Regulation Reservoir, Irrigation System Tailwater Recovery, Subsurface Drain, Well Decommissioning | | | | Furrow or flood
irrigation distribution
uniformity (DU) is
maximized and
maintained | | | | Surge irrigation valves, Irrigation Field Ditch, Managed
Furrow Lengths, Alternate Row Irrigation, Irrigation Canal
or Lateral | | | | Sprinkler and microsprinkler distribution uniformity (DU) is maximized and maintained | | | | System Equipment Maintenance, System Pressure
Maintenance, Appropriate and Uniform Nozzle Sizes,
Microsprinkler Low Pressure Shut-off Valves, Low Wind
Conditions during Applications, Herbaceous Wind Barrier,
Windbreak/Shelterbelt | | | | Drip irrigation distribution uniformity (DU) is maximized and maintained | | | | System Equipment Maintenance, System Pressure
Maintenance, Appropriate Tape/Emitter Application Rate,
Pulse Irrigation | | | | 1. Number of acres where irrigation management strategies are | | | acres | | | | | planned but not yet in place 2. Number of acres that have some planned irrigation management | | | acres | | | | | strategies in place | | | | | | | | 3. Number of acres that have all planned irrigation management strategies in place | | | acres | | | | | Pesticide Management | | | | | | |---|-----------------------------------|-------------------|------------------------------|---|--| | Pesticide
Management | Not
applicable to
operation | Practice in Place | Planned
within 3
Years | Menu of Practices | | | Site preparation and plant material promote crop health | | | | Bedding, Irrigation Land Leveling, Irrigation Water
Management, Resistant Varieties, Conservation Crop
Rotation, Cover Crop | | | Pest and beneficial populations are monitored | | | | UC IPM Pest Management Guidelines consulted, scouting for pest detection, pest records maintained | | | Cultural practices are used to reduce pest pressure | | | | Sanitation, Dust Mitigation, Access Road, Mulching,
Mechanical Weed Control, Physical or Environmental Pest
Control, Pest Exclusion | | | Biological controls
are used where
effective | | | | | | | Efficient pest control decisions are made | | | | UC IPM Pest Management Guidelines consulted, reduced-
risk or selective pesticides used where effective, application
decisions based on scouting data, pest threshholds and/or
risk assessment models, pesticides selected for lower risk of
runoff or leaching where possible, hot spots selectively
treated, pesticides applied at the lowest effective label rate | | | Pesticide
handlers/applicators
trained yearly | | | | | | | Pesticide label instructions followed Application | | | | | | | equipment calibrated Appropriate disposal methods used | | | | | | | Pesticide storage
facilities include
concrete pads and
curbs for containment
of spills | | | | Agrichemical Handling Facility | | | Production wells are
on elevated
impervious bases
upslope of pesticide
storage and handling
facilities | | | | | | | Wellhead protection
consists of an
impermeable pad,
sump, or buffer area
of 100' around the | | | | | | | wellhead Containment basins lined to prevent pesticide leaching | | | | | | | Mixing and loading is performed on sites with low runoff hazard, over 100' | | | | | | | downslope of well | | | | | | | Pesticide
Management | Not
applicable to
operation | Practice in
Place | Planned within 3 Years | Menu of Practices | | |---|-----------------------------------|----------------------|------------------------|--|--| | Field layout is designed to minimize pesticide movement | | | | Irrigation Land Leveling, Land Smoothing, Contour Farming, Row Arrangement | | | Fields are managed to reduce pesticide movement | | | | Conservation Cover, Cover Crop, Vegetative Barrier, Mulching, Residue Management, Deep Tillage, Irrigation Water Management, Contour Buffer Strip, Sediment Basin, Water and Sediment Control Basin, Irrigation System Tailwater Recovery, Conservation Cover, Filter Strip, Grassed Waterway onto Constructed Wetland | | | 1. Number of acres where pesticide management strategies are planned but not yet in place | | | | acres | | | 2. Number of acres that have some planned pesticide management strategies in place | | | | acres | | | 3. Number of acres that have all planned pesticide management strategies in place | | | | acres | | | Nutrient Management | | | | | | |---|-----------------------------|-------------------|------------------------|---------------------------------------|--| | Nutrient
Management | Not applicable to operation | Practice in Place | Planned within 3 Years | Menu of Practices | | | Nitrogen (N) and
Phosphorus (P) crop
requirements are
known | | | | | | | N and P sources for crop are known | | | | | | | Well/irrigation water
monitored for N and
P levels | | | | | | | Tissue analysis for crops with identified critical levels | | | | | | | Pre-sidedress
nitrogen tests are
used | | | | Soil Nitrate Quick Test, Soil Testing | | | Nutrient budget used in determining fertilizer applications | | | | | | | Fertilizer application timing is based on crop needs | | | | | | | Fertigation is used where appropriate | | | | | | | Cover crops are used
to increase soil
fertility and reduce
fertilizer applications | | | | Cover Crop | | | Irrigation is managed to avoid loss below the root zone | | | | | | | Application equipment is calibrated regularly | | | | | | | Nutrient
Management | Not applicable to operation | Practice in Place | Planned within 3 Years | Menu of Practices | | | |---|-----------------------------|-------------------|------------------------|-------------------|-------|--| | Fertilizer handlers | | | | | | | | and applicators are | | | | | | | | trained | | | | | | | | Precision placement | | | | | | | | is used to deliver | | | | | | | | nutrients efficiently | | | | | | | | Fertilizer storage | | | | | | | | facilities include | | | | | | | | concrete pads and | | | | | | | | curbs for containment | | | | | | | | of spills | | | | | | | | Mixing and loading is | | | | | | | | performed on sites | | | | | | | | with low runoff | | | | | | | | hazard, over 100' | | | | | | | | downslope of well | | | | | | | | Septic systems are | | | | | | | | monitored and | | | | | | | | maintained | | | | | | | | 1. Number of acres where nutrient management strategies are planned | | | | | acres | | | but not yet in place | | | | | | | | 2. Number of acres that have some planned nutrient management | | | | | acres | | | strategies in place | | | | | | | | 3. Number of acres that have all planned nutrient management | | | | | acres | | | strategies in place | | | | | | | S:\NPS\Agriculture Waiver\Inspections and Enforcement\NOI Final Drafts\Ranch Information_ Management Practices Form.doc